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The paper examines the influence of a piston motion on the gaseous motion set 
up by an explosion. This is a problem of relevance not only to explosions in 
which the remnants of the original explosive are present, but also by the applica- 
tion of the hypersonic similarity law, to the steady flow at high Mach number 
past a blunt-nosed object with increasing thickness. In  the vicinity of the piston 
perturbation theory breaks down and matching techniques have to be employed. 
A solution is given in terms of a small parameter which essentially depends on 
the ratio of the speed of the piston to that of the shock. Some particular cases are 
discussed in which the piston motion plays a similar role to the counter pressure 
of the undisturbed gas. 

1. Introduction 
Some progress has been made in the field of high-speed flow research by the 

judicious use of the hypersonic similarity law which expresses the equivalence 
of steady flow at high Mach number with unsteady flow in one less space dimen- 
sion. It is in the spirit of this law that the present paper is written, for, although 
the paper discusses an unsteady one-dimensional flow problem, in essence it 
serves as a useful starting point to that of determining the influence of an after- 
body on the flow past an otherwise blunt-nosed body of zero thickness. The in- 
clusion of an afterbody of increasing thickness gives rise to an increasing drag. 
The case when this drag becomes larger than the initial contribution from the 
blunt nose has been considered by several authors and their work is discussed 
by Van Dyke (1966); Stewartson & Thompson (1968) have examined numerically 
the asymptotic approach to the blast-wave solution for large time, adopting as 
their model the unsteady flow set up by a piston moving in a semi-infinite tube 
first with constant velocity and then coming instantaneously to rest. Another 
feature of the problem, which has been the subject of much discussion (see, for 
instance, Freeman 1965), is the effect of shock stand-off leading to the establish- 
ment of an entropy layer near the body. The present theory, though it could take 
into account the entropy layer, is not applicable to the flow about the nose itself, 
but rather in a region just away from it where the finite drag of the blunt nose 
still dominates over that of the afterbody; this latter drag, which is assumed 
to be initially zero or much smaller than that due to the blunt nose, will, of 
course, increase in value and eventually dominate and the theory will be na 
longer applicable. Mirels (1959, 1962) and Mirels & Thornton (1959) have dis- 
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cussed flows associated with slightly perturbed power law shocks and included 
in their analyses are some of the features which occur in this paper. The same is 
also true in rather an indirect way of a paper by Sakurai (1956), whose numerical 
results we use. The use of Sakurai’s computations does enable one to make 
a comparison of the relative influence of the piston with the counter pressure 
of the undisturbed gas on the shock path. Mirels ignored this latter effect. For 
the effect of the piston to begin to dominate results show that the ratio of the 
piston speed to the sound speed of the undisturbed gas must be in the region of 
five or more. The extent of the overlap of previous and present work will become 
apparent later, but essentially we shall be concerned with obtaining a uniformly 
valid solution throughout the entire region of the flow including that in the 
vicinity of the body where perturbation theory breaks down. The method of 
‘inner and outer expansions’ is used and leads to the establishment of results 
from which successive higher approximations may be developed. In  addition 
the method does allow bodies other than power lawed (see Hayes & Probstein 
1959, Mirels 1962) to be considered. 

The problem described in the paper has its counterpart in certain astrophysical 
situations such as the ejection of matter from erupting stars in the evolution 
of a planetary nebula with mass outflow from the central star (see, for instance, 
Mathews 1966). In  these problems a knowledge of the density distribution is 
important since the emission properties of a gas depend generally on (density)Z. 
This provides another reason for looking more carefully in the present problem 
at the flow in the inner region, though one must note the inadequacy of the 
blast wave solution in describing the starting flow from an explosion of finite 
dimension. 

The method of analysis to be employed is similar to the matching technique 
described by the author in discussing gravitational effects on expanding H I1 
regions (Goldsworthy 1967), the small parameter in the present problem being 
the ratio of velocity of the piston to that of the shock. The corresponding para- 
meter in the case of steady flow at high Mach number would be the ratio of the 
slope of the afterbody to that of the shock. In  both these cases the parameter 
will, in general, vary and be a function of either the time or the distance along the 
body. 

Some particular cases where the effect of the piston motion is similar to that 
of the counter pressure of the undisturbed gas (this is so for power law piston 
paths in which Rp a t2/(n+3), where n = 0’1 or 2 for plane, cylindrical or spherical 
motion respectively) are considered. In  these we make use of Sakurai’s (1956) 
computations on the effect of counter pressure alone on the propagation of a 
blast wave. Figures are given showing the shock path, the pressure at  the piston 
and the velocity distribution. From these the reader will see that the counter 
pressure exerts a greater influence when the Mach number of the piston is less 
than one, but for Mach numbers of two or more the piston motion quickly 
establishes itself as the dominating influence near the piston. 

The theory does not go all the way in following the transition of the flow from 
blast dominated to piston dominated, but the indications given by it are at least 
in the right direction. 
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2. Equations of motion and the basic flow 
Denoting the fluid velocity by u, pressure by p ,  density by p, and measuring 

distance r from the origin of the explosion and t from the time of the explosion, 
then for a perfect gas with constant ratio y of specific heats the equations of 
motion are i a  

at F a r  
9 + - - (pur") = 0, 

au au l a p  
-+u-+-- = 0, 
at ar par 

(3) 

For a constant energy point source explosion the similarity solutions of Sedov 
( 1 9 4 6 ~ )  b)  and Taylor (1950) are applicable. On purely dimensional grounds the 
radius R at time t of the shock is related to the energy E of the explosion and the 
initial density pi of the surrounding gas, assumed uniform, by 

If we take this as a typical dimension of the disturbed gaseous region and 
assume the shock to be sufficiently strong for the fluid velocity to be of the same 
order of magnitude as the shock velocity, we can write 

t = ~ t ' ,  r = (E/pi)4("+3)72/(n+3)r', u = ( ~ / p ~ ) l / ( n + 3 )  T-(n+i)/(n+3)u', 

p = pi(E/pi)2/("+3) ~-2("+l)/(n+3)p', p = pip', (5) 

where T is some measure of the time scale involved. In  terms of the new variables 
the equations of motion are left unaltered; for ease in writing we shall drop the 
prime. 

A similarity solution can now be sought. This is well known and we shall not 
discuss it in any great detail, except to note its behaviour as r --f 0. From the 
ordinary differential equations or from Sedov's analytic solution one can 
show that 

uo N ( u / y )  (r/R), Po N kl"(r/R)("+l)'('-l)) Po N [(n + 3)/212 k2, u2, (6) 

where U and R are the non-dimensionalized shock velocity and radius, respec- 
tively, kl,, k2, are known numerical constants given by Sedov (1959) and the 
subscript 0 is used to label the similarity solution as the basic approximation 
outside some small inner region in which the piston motion assumes equal 
importance with the explosive process. For a given piston motion the similarity 
solution becomes less valid as the piston is approached; only in the rather special 
case when the piston radius Rp M tz/(3+n)r is perfect matching possible. Conse- 
quently, in order to discuss the motion in the vicinity of the piston, we choose new 
inner variables by equating the order of magnitude of the fluid velocity as given 
in expression (6) to that of the piston, so that, if V,(T) is taken as a measure of 
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the typical piston velocity, the non-dimensional radial distance as introduced 
in ( 5 )  and appropriate to the inner region is given by 

B = ( p i  u (7)n+3 7n+l /E) (2r+n- l ) /O t+3)  (7-1)  < 1, 

from which it follows using expressions (6) that the flow variables can be written 

where P 

(8) = & - 1 ) I ( 2 y + n - l )  ;iz = ,$+1)/(2y+n-l)p, = jj. 

By definition the barred quantities are O( 1) in the inner region. The quantity B 

which is the governing parameter, can be interpreted in several ways, in par- 
ticular it is some power of the ratio of the piston velocity to that of the shock at  
time 7. If our interest is centred on small time then e is small if the piston expands 
at a rate not greater than 7-(n+1)/(n+3). This is the only case considered in the 
present paper. With the substitution of expressions (7) and (8) the equations of 
motion in terms of the inner variables become 

az -a% i a j j  
( a t  aas) par 

- a p  p a __ 

( i + u % )  al; (E) py = 0. 

E -+u- +=:=o, 

at aas mas 2 + u -  +- - (urn) = 0,  

(9) 

The basic solution in the inner region is obtained by putting E = 0. Continuing 
to use the subscript 0 to denote the basic approximation, that in the inner region 
is obtained by putting B = 0; this gives 

r-'o = [(n + 3 ~ 1 2  k2, u2, (12) 

yielding 

At the piston 7 = Rp(t), Go = &(t),  so that 

Equation (11) gives Po = r-'P G($),  (16) 

where co is the Lagrangian co-ordinate found by integrating (15) along a particle 
path. It is readily shown that 

- to = ( T n + l - j p + l  ) U ( 2 l Y ) .  (17) 

We now encounter our first real difficulty, for the determination of G(Eo) in- 
volves knowing the entropy distribution at some time within the inner region. 
We shall adopt the strict mathematical, though not altogether physically correct, 
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approach and trace the particle paths to an earlier time t,, say, and use there the 
entropy distribution function as given by Sedov (1959). Since particle paths even- 
tually emerge from the inner region this will be a valid procedure for all except 
those paths lying very near to the piston, unless we take t, to be zero. Unfortunately 
this leads to the perpetuation at  the piston of the same singular behaviour of the 
temperature as that which occurs a t  the centre of the explosion in the Sedov 
solution. It has been pointed out that since the temperature gradient becomes 
large near the centre that conduction would be important there. This has been 
considered by Korobeinikov (1957) and its inclusion has the effect of levelling 
the temperature out. The same action could also be attributed to radiation loss 
as well as other physical processes. Obviously we could use an acceptable tem- 
perature distribution worked out on the basis of some theory or experiment, 

\?a 0 1 2 
r\ 

1.2 0.40 0.78 1-16 
1.3 0.61 1-18 1.72 
1.4 0-83 1.60 2.35 
1.67 1.47 2.85 4.13 

TABLE 1 

but for the purpose of illustration we use the known Sedov solution. In  the case 
of steady flow one would have to take into account the entropy layer due to the 
stand-off of the shock away from the nose. 

Equation (17) for a particle path can be written 

(18) ;in+, = p + 1 +  U-(ZlY)* 

According to our basic approximation in which we assume e to be small, the 
piston must not move at a rate greater than t-(n+1)/Q+3). Hence, since y > 1 and 
U cc t-(n+1)/(n+3), a t  sufficiently small time t, when the shock velocity is U, the 
particle paths are given approximately by 

P 0 

- 
(19) 

and emerge from the inner region to pass into the region of overlap of the inner 
and outer flows where 

?"+1 N to U<(Z/Y) 

pO(;i, t,) [~o(tl)](l/7') [ 2 / ( n  + 3 ) ] ( 2 / Y )  k,, kz;2(1/7)(?;/Rl U~2/y).(y-l)/(n+l))(n+l)/(Y-l), 

[ ~ o ( t l ) ] ( l / ~ )  [ z / ( ~  + 3)l(z/r) k,, ~F;/Y( ~ ; ~ ~ + i ) - i ~ ~ - i )  E;KY--~),  (20) 

R, being the shock radius at  time t,. 
Hence at  time t 

Po = j$/Y)[2/(n + 3)](3 /Y)  k l , k ~ + l / y ) (  U;R~+l)-l/(~-l) [(,n+l- @+I) u(2/?')]11(?'-1). (21) P 

We shall use this expression right up to the piston (Eo  = 0) ,  in which case t ,  must 
be taken to be zero, since we have assumed that Eo Rp(t,)n+l U!f/Y). The quantity 
R:+lU; is then determined from the Sedov solution, there being no need to take 
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into account variations of the shock velocity due to the piston motion. The 
values of R:+'U2, displayed in table 1 are those computed by Sakurai (1953). 

The inner basic solution is now complete and we can go on to  determine the 
second approximation for the outer solution. 

3. The second approximation for the outer solution 
I n  terms of the outer variables expression (15) becomes 

which suggests we look for an outer solution of the form 

= uo + (y--1)l(2y+n-1)U1 + . . . , 
in which for small r 

For a piston path having a power-law variation with time, Rp = Kta cc R$(n+3)a 

we require that 

For large F expression (21) can be expanded 

(25) 

which, when transformed to  the outer variables, becomes 

(27) 

(28) 

giving the form of the outer solution for the density as 

PI+.. . ,  p = po + ,++I) (y--l)/(W+n-U 

with 

for small r .  
In  like fashion we expand the pressure 

(30) = p o  + &+I) (y-1)/(zytn-OPl + . . . . 
When expressions (23), (28) and (30) are substituted in the equations of 

motion, the appropriate similarity forms being used for uo, po and po, and terms 
of higher order than the first in ~ ( ~ + l ) ( y - l ) l ( ~ y + ~ - - l )  neglected, the resulting linear 
equations have coefficients involving the similarity variable rlR. Following the 
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method adopted by Sakurai (1956), whose work we will refer to more fully later, 

(31) 
we write 

ZL = U [ p  + (c/ U)2f(U + . . .], 
p = (U2/y) [g'O't ( c / U ) 2 g ( l ) +  ...I, ( 3 2 )  

p = h(o)+(c/U)Zh(l)+ ..., (33) 

U? R:+1 

U2Rn+l (b) -- - l+h  - +..., (34)  

where f(O), g(O) and h(O) are functions of the similarity variable x = r /R and are 
given by the Sedov solution for a constant energy explosion, f(l), g(l) and are 
also functions of x and represent the perturbations due to the piston motion, h is 
some numerical quantity to be determined, and c is a quantity which will be 
defined more precisely later; for the moment suEice it to say that c can be a 
function of time and is proportional to s(n+1)(y-1)'(2y+n-1). The reason why ( C / U ) ~  
has been used rather than some power of e will become apparent later. The reader 
is asked to note that in the above expressions U and R are the shock velocity 
and radius accurate up to the second approximation. The above form of the 
solution is allowable only if the piston follows a path having a power law variation 
with time. Taking Ep = Kt" and noting the behaviour of u1 for small r (equation 
(25)) we require that for small x 

so that c2 &+-4)l(n+3)(n+l). (36) 

The equations satisfied by f(O), 9'0) and h(O) are those given by Sakurai; those 
satisfied by f ( l ) ,  g(l)  and h(l) are slightly different since he took c to be a constant. 
As noted by Sakurai it is convenient to introduce new dependent variables 
qA p, x defined by 

(37) f (1) = ( x  - f (0)) q$, = 9("' p, h(U = h(O)X. 

The perturbation equations then become 

1 - (x -f(O)) #z + - $, = - [2j$"' + +(n + I) (a(= + 3) - 3) - 11 @ 
Y D  
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where E is a constant of integration. Elimination of x from (39) by the use of (41) 
yields a system of equations for $ and 9. These are best solved by putting 

which results in two sets of equations not involving A. The boundary conditions 
to be satisfied are the inner matching condition (35) and in the case of a strong 
shock $,(I) = #2(1) = $,(1) = $,(l) = 0. We are particularly interested in the 
behaviour of the solution as x + 0, which, remembering that f0) N x/y there, 
we find to be given by 

where A,, B, are numerical constants determined by satisfying the shock con- 
dition and the differential equations and v = (27 + n - l)/(y - 1); $, and $, are 
similar in form except that different numerical constants A ,  and B, are used and 
extra constant terms are added, namely 

The quantity h is now determined by satisfying the inner boundary condition (35). 
This requires that 

Y-1 -(A,+AA,) Y (a) c = (T--) a(n+3) Y 1 (%)"+' 
where R P = &'-1)/(2y+n-1)Rp is the distance moved by the piston in time t and non- 
dimensionalized according to scheme (5). A ,  and A ,  are known numerical 
constants and c2 can be chosen rather arbitrarily: here we define it by 

so that 

Knowing h we can now find the correction to the shock path using expression (34). 
Furthermore, we can determine the pressure change in the vicinity of the piston; 
using (44) and (46) we see that as x -+ 0 
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giving 

Using (31 ) ,  (37), and ( 4 3 )  and retaining only the dominant terms, the velocity 
as x + 0 is found as 

a=- "[ 1+ (a(n+t)y_l) 2 (3)"" YR 

x ((?!)"+L y - 1  ( a @ + 3 )  ~- 2 i) ( B , + ~ { B 2 + ( y - 1 ) ~ 2 } ) ) + . . . ] .  ( 5 3 )  

4. The second approximation in the inner region 

variables suggests that we try the following expansions, 
The form of expressions ( 5 2 )  and (53 )  when written in terms of the inner 

Substituting these in (9) and comparing the orders of magnitude of the terms 
occurring, it is easily seen that, provided (n+ 1 )  (y- 1)/(2y+n- 1 )  c 1 ,  which 
is true for all y, n = 0 or 1 ,  and y < 4 for n = 2,  the pressure still remains inde- 
pendent of r ,  so that within the inner region it is given by expression (52). If this 
expression is substituted in the equation obtained by eliminating the density 
from the continuity andenergyequations, and the condition at the piston satisfied, 
we find the velocity correct up to the second approximation, 

&+l)(y--l)l(2y +n-U ( a ( n i 3 ) ~ ~ )  (~@$3-~) 
Y - 1  

a ( n + 3 ) y  Ep "+l 
x (B1+A(B2+ (y-  1)x2})  @)n+l+ ...I [ 1- ( q + l ] +  

2 (4 I 
(56 )  

As a check the reader will notice that this matches expression (53) when !? is large. 

5. Some particular cases and conclusion 
In his paper Sakurai discussed the effect of a constant counter pressure of the 

unshocked gas on the similarity solutions of Sedov and Taylor. He constructed 
a solution in the form of a power series in the square of the ratio of the sound 
velocity of the undisturbed gas to the shock velocity; the quantity cis taken to be 
the sound velocity of the undisturbed fluid and is a constant. From (36) it  is seen 
that e,  as we have defined it, is a constant when a = 4/(n + 3 ) .  These are the par- 
ticular cases considered in this section and for which Sakurai's computations 
can be applied directly. They also serve as illustrative examples of how one should 

3 Fluid Mech. 38 
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proceed in the general case. It is also of interest to note that in these particular 
cases the effect of counter pressure can be included; this we will do by taking c to 
be the undisturbed sound speed non-dimensionalized according to scheme (5). 
In  this case the boundary conditions to be applied at  the shock are 

The quantity of most interest to us is h and this we seek to determine. Sakurai 
found that value of h for which 4 is finite at  the origin. In our case we have to 

n a A, A2 Bl B2 
4 
3 - 23.5 - 11.0 - 8.0 - 4.5 

2 5 - 32.5 - 17.0 - 14.0 - 8.0 

- 0 
1 1 - 29.5 - 1 5 0  - 12.0 - 7.0 

4 - 

TABLE 2 

choose h such that the matching condition (35) is satisfied. Since c has been 
chosen to be the sound speed, equation (50) no longer serves to determine h and 
must be replaced by 

Since Rp K R2 and in the first approximation U2Rn+l is constant, h is truly con- 
stant. When the piston velocity is small compared to the sound speed c we recover 
Sakurai’s values for A. 

The constants A ,  and A,, and also B, and B,, can be determined from Sakurai’s 
computations, though not very accurately since only graphical results for $,, $,, 
$, and $2 are given in his paper. However, their accuracy is sufficient to allow the 
method to be indicated. In table 2 the values of the constants thus computed are 
given for y = 1.4 and n = 0, 1 and 2, the corresponding values of a being 3, 1 and 
$, respectively. 

For a cylindrical explosion ( U / c ) ,  (R,/R), = (UJ2c)z and for this case the 
computed shock paths for various values of Up/c are shown in figure 1 using 
expansion (34) and expression (59) for A. It will be seen that the piston motion 
has very little effect on shock path unless Up/c is in the region of about 5 or more, 
the counter pressure of the undisturbed gas accounting for most of the departure 
from the basic similarity solution illustrated in the figure by the broken curve. 
A comparison with the numerical work of Mirels can be made here by taking 
Upjc infinite. Using the values given in table 2 the shock path in this case works 
out to be 

2 R - -  - 1 +0.038 @) , 
Rl 
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the corresponding value of the constant multiplying (R,/Rl)2 obtained by Mirels 
is 0.039. At greater distances than those shown in the figure the effect of the 
piston is enhanced by the diminishing shock velocity, but here the theory is no 
longer applicable since the shock is becoming weak. 

c2 t 

FIUURE 1. Shock paths for U,/c = 0, 
2 and 5. 

; o  0.1 0.2 0.3 0.4 I 

c2 t 

FIGURE 2. The pressure at the piston 
as a function of cat. 

5 

The piston motion will have a greater influence in its near vicinity, as can be 
seen by examining the pressure and the gas velocity. Taking into account the 
new definition of c, the pressure in the inner region is given by 

and the velocity is 

u = 2 ([ 1 - (;) (B, +A& + (y - 1) x,>) + . . .] [ 1 - F) *+l] + 27 (y") 
Y R  

(61) 

Figure 2 shows the pressure at  the piston for UJc = 0 , l  and 2. Again the pressure 
of the undisturbed gas exerts most influence for UJc < 1, and it is not until the 

3-2 
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Mach number of the piston reaches a value of about 2 (for steady flow at Mach 
number 8, say, this corresponds to cone semi-angle of about 14’) that the piston 
motion has any noticeable effect. 

In the outer region the pressure and velocity are given by expressions (31) and 
(32) in which Sakurai’s tabulated results for f@), g(0) and his graphical results for 
q51, q52, $1, and $2 can be used. In  figure 3 the velocity distribution is shown 
giving the first and second approximations. The distribution will of course change 
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t i 
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rlR 

FIGURE 3. The velocity distribution for UJc  = 0, 1 and 2 when Ulc = 3. 

with time and the plot is given at  such times when Ulc is 3, i.e. when c2t is about 
0.09. The velocity distribution clearly demonstrates the effect of the piston in 
the inner region and the breakdown of the perturbation solution there. Near the 
shock its influence is negligible, the counter pressure assuming the more dominant 
role. 

This work was performed while the author was a Visiting Fellow (1967-68) at  
the Joint Institute for Laboratory Astrophysics (of the National Bureau of 
Standards and University of Colorado), Boulder, Colorado. 
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